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Abstraet-- The time dynamics of Rayleigh-B6nard convection originating from different heating rates for 
a Boussinesq fluid of Prandtl number Pr = 0.71 (air) has been studied numerically inside a three-dimen- 
sional (3D) rectangular box of aspect ratios Fz = 1.25, Fy = 2. The heating rate, introduced through a time 
dependent Rayleigh number R(t), drives a flow transition at least in the range of supercritical Rayleigh 
numbers (Rs) here considered to solve the governing equations; R, = 3.6 x 10 3, 5 × 10 3, 9 x 10 3, 1.3 x 10 4 
and 1.6 x 10 4. The flow transition, identified by a change of the rotation sense of a two-roll fluid pattern, 
was found when perfectly conducting side walls were used. This kind of flow transition has been reported 

in recent experiments. 

INTRODUCTION 

Rayleigh-B6nard (RB) convection is one of the sim- 
plest nonlinear problems where the velocity and tem- 
perature are coupled. RB convection is an appropriate 
model to understand the role of flow instabilities and 
laminar flow transitions [1]. The onset of RB con- 
vection has been widely investigated. For a review of 
the linear stability analysis, see Chandrasekhar [2]. 
For infinite parallel plates, there is a transition from 
a pure conductive regime to convection at the critical 
Rayleigh number Ro = 1708. The flow pattern consists 
of a series of counter rotating infinite rolls with axes 
parallel to the thermal active walls. 

The finite box problem has been studied both exper- 
imentally and theoretically. The rectangular parallele- 
piped of Stork and Mailer [3] and the right circular 
cylinder of Koschmieder [4] give us considerable in- 
formation on both the onset of convection and the 
flow pattern found in RB convection for a wide range 
of aspect ratios of the confining container. In theory 
the predictions of Davis [5] agree very well with the 
experimental work of Stork and M~aller [3], and the 
works on right cylinders of Koschmieder [4] and Stork 
and Mailer [6] are in close concordance with the cal- 
culations of Charlson and Sani [7]. The flow pattern 
slightly above the critical Rc at moderate aspect ratios 
is time independent. However the flow pattern can 
exhibit temporal dependence for large aspect ratios 
[8]. 

Another feature of RB convection in confined 
enclosures is the loss of rolls or the wavelength 
increase when the Rayleigh number exceeds the criti- 
cal value. The number of rolls is one of the most 
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characteristic properties of RB convection. The num- 
ber of rolls and the dimensionless wavelength 2, which 
corresponds to the ratio of the width of one roll to the 
depth d of the fluid layer, are inversely related. The 
theoretical computations of Schliiter et al [9] predict 
a decrease of the wavelength (increase of the number 
of rolls) with increasing supercritical Rayleigh 
number. Experimentally, however, the opposite result 
was found by Koschmieder [4] and Krishnamurti [10]. 
Furthermore, Mukutmoni and Yang [11] have shown 
through numerical computations that an increase of 
R beyond the critical value Rc affects significantly the 
steady flow pattern through the mechanism of loss of 
rolls. When the heating process in RB convection is 
made through a steady and fast increase of the tem- 
perature difference between the upper and lower 
plates, the wavelength also decreases [4]. This fact 
shows that the heating rate could be responsible for 
the change of pattern at a given supercritical Rayleigh 
number. In addition, Krishnamurti, through a theor- 
etical and experimental work [12, 13] has shown that 
the slope q of a linear variation of the mean tem- 
perature can induce a different flow pattern depending 
on the value of ~/. At very low values of i / the flow 
pattern was identified as 2D rolls and at high values 
of r/hexagonal cells were found. Moreover, the sign 
of ~/was the controlling parameter of the direction of 
the flow at the center of the hexagonal cells. Recently, 
the experiments of Arroyo and Savir6n [14] have 
shown that the rate of temperature increase leads to 
two different steady flow patterns in RB convec- 
tion, which may be interpreted as two branches of a 
bifurcation. 

In summary, the sensitivity of the convective pat- 
tern to the rate at which the heating is performed must 
be explored accurately in order to explain the physical 
mechanism responsible for that transition. In that 
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Nu 
<Nu> 
NUm 
P 
Pr 

depth of the fluid layer 
gravitational acceleration 

box dimensions in x, y, z coordinates, 
respectively 
local Nusselt number 
overall Nusselt number 
maximum local Nusselt number 
dimensionless pressure 
Prandtl number v/~ 

qx, qy, qz dimensionless heat fluxes at x, y, z 
directions, respectively 

R Rayleigh number gilA TL3/w 
/~ critical Rayleigh number at which 

convection starts 
R~ supercritical Rayleigh number 
R(t) time dependent Rayleigh number 

(RJ~). t 
s~, So flow states of the system 
t dimensionless time 
Th, Tc hot and cold temperatures, 

respectively 
u, v, w dimensionless velocity components at 

x, y, z coordinates, respectively 
Urn, V~, Wm maximum velocity componentes 

at x, y, z coordinates, respectively 
[~lm maximum velocity projection on a 

given plane of the velocity field 
x,y, z dimensionless coordinates 

NOMENCLATURE 

b/b Xi tensorial notation for velocity and 
coordinates, respectively, 

Greek symbols 
thermal diffusivity 

fl coefficient of thermal expansion 
At discrete time step 
AT (Th-- To) temperature difference 
AT(t) time dependence of the temperature 

difference 
Ax, Ay, Az discrete steps in x, y, z 

coordinates, respectively 
AO contour interval for isotherms 
r/ slope of a linear variation of the mean 

temperature 
Fy, Fz aspect ratios ly/d and lz/d, respectively 
2 dimensionless wavelength 
v kinematic viscosity 
® dimensionless temperature 

( T -  Tc)/(Th-- Tc) 
p fluid density 
z dimensionless duration of the 

unsteady heating 
rF vertical relaxation time of the system 

d2 /~ 
z~ critical value for r 
z-,  r + closest values of zc. 

way, the full 3D nonlinear equations must be solved 
retaining time derivatives which suggests, due to their 
complexity, that a detailed numerical study could shed 
light on this phenomenon. 

The goal of this work is to perform an accurate 
calculation of this kind of transition through a pro- 
grammed temporal evolution of the governing equa- 
tions. This can be done if one includes explicitly a time 
dependent Rayleigh number R(t) in the governing 
equations. The R(t) function will allow us to deter- 
mine the influence of the heating rate (slope of the R(t) 
function) on the flow pattern found for RB convection 
inside a small box. 

In the present investigation, the governing equa- 
tions for a Boussinesq fluid of Prandtl number 
Pr = 0.71 are integrated numerically in a 3D rect- 
angular box of aspect ratios F z = 1.25, Fy = 2 heated 
from below with perfect conductor side walls. A linear 
R(t) function is considered, which has been already 
used [12, 15]. 

The fluid used in this analysis, characterized by its 
Prandtl number Pr = 0.71 (air), has been selected for 
its fast response to thermal changes (low thermal iner- 
tia). 

The time dynamics of the convective regime orig- 
inating from different heating rates shall be described 

at increasingly supercritical values of the Rayleigh 
number. In order to inspect the influence of the bound- 
ary conditions imposed at the side walls on the system 
behavior, an analysis shall be done for a similar physi- 
cal configuration with adiabatic instead of perfect con- 
ductor side walls. 

FORMULATION 

Problem description 
Consider a rectangular box of height Ix = d, hori- 

zontal dimensions ly, It, of aspect ratios Fy = ly/d = 2, 
Fz =-lz/d= 1.25 filled with a Boussinesq fluid of 
Prandtl number Pr = 0.71 (Fig. 1). The top and bot- 
tom boundaries are kept at temperatures T¢ and Th 
(Th > T~), respectively and the side walls are perfect 
conductors. 

The dimensionless governing equations in Car- 
tesian coordinates for a Boussinesq fluid in three 
dimensions, neglecting radiation, are : 

~Ui ~Ui ~P + RiPrO+ Pr[V2u~] (2) 
+ uJ axj - Ox~ 

0ui 
- - = o  (1) 
c3x i 
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Fig. 1. Physical configuration. 

00 00 
0 t  + u, ~ = V20. (3) 

The governing parameter is the time dependent Ray- 
leigh number R(t) = gf lAT(t)d3/w.  The Prandtl num- 
ber is Pr = v/~, where ~ is the thermal diffusivity, v 
the kinematic viscosity. AT(t) = Th--Tc is the tem- 
perature difference between the top and bottom 
boundaries (which is a function of time), g the gravi- 
tational acceleration and fl the thermal expansion 
coefficient. 

Time, velocity, pressure and temperature are scaled 
using d2/~, o~/d, p(o~/d) 2 and (Th -- Tc), respectively, as 
reference quantities where p is the fluid density. The 
Cartesian coordinates are scaled with the height d of 
the cavity. The boundary conditions for the velocity 
and temperature in non dimensional form (u, v, w, 0) 
are the following: 

y = 0 ,  Fy 0~<x~<Fx 0~<z~<Fz 

u = v = w = O  O = l t p  

z = 0 ,  Fz 0~<x~<F~ 0~<z~<Fy 

u = v = w = O  O = l t p  

x = 0 , ]  0~<y~<Fy 0~<z~<F~ 

u = v = w = O  0 = 1,0. 

At the vertical walls a linear temperature profile ltp 
between the temperature values of the hot and cold 
walls is imposed to emulate conduction [16]. 

The non dimensional heat transfer across the fluid 
is represented by the overall Nusselt number ( N u )  
which is computed, at each horizontal boundary, aver- 
aging the corresponding local Nusselt number Nu. 
The local Nusselt number is defined at any point of 
the physical domain by 

I 0_ Ox x direction 

Nu = v O -  O0 y direction (4) ] oy 
wO-- O0 C3z z direction 

The numerical computation of the non-dimensional 

heat flux has been performed integrating the local 
Nusselt number, at each horizontal boundary of area 
E, using the following definition, 

= f~ Nuda.  q 

Note that at a given boundary the local Nusselt num- 
ber definition in the normal direction must be used. 
The spatial derivatives involved in the Nusselt defi- 
nitions have been computed with backward and for- 
ward two and three-point formulae and the Nusselt 
numbers were averaged using Simpson's rule. 

Heating process and initial conditions 
In RB convection experiments the heating process 

is normally a quasi-steady operation where the time 
involved to reach a determined supercritical Rayleigh 
number is many times greater than the thermal 
diffusion time scale or vertical relaxation time 
• r =- d2/a of the system. 

Usually in the experiments, the fluid is first ther- 
mostated at a given temperature say To, next the upper 
plate is stabilized at To to proceed to raise the lower 
plate temperature slowly, until a predetermined Rs is 
reached. In this way the final flow pattern is reached 
through a successive number of intermediate steady 
flow configurations where the system is in thermal 
and mechanical equilibrium. Therefore, the temporal 
dependence of R(t) is attributed to the temporal vari- 
ation of the temperature difference AT(t). 

In this paper, the heating is a monotonic function 
of time which is introduced into the governing equa- 
tions by means of a time dependent Rayleigh number 
R(t) as follows : 

R(t) = (Rs/'r)" t 

where Rs is the prefixed supercritical value of R, t the 
dimensionless time and z is a temporal dimensionless 
parameter which determines the slope and therefore 
the duration of the unsteady part of the heating 
process. 

The choice of a linear time function for the heating 
process was made for convenience, however, it was 
already used in the theoretical works of Krishnamurti 
[12] and Swift and Hohenberg [15] and in the exper- 
imental work of Krishnamurti [13]. 

In order to simulate as closely as possible a real 
experiment, the calculation starts with a linear tem- 
perature profile between hot and cold wall (ltp) and 
the fluid at rest. 

u(x ,y , z ,  O) = v(x, y , z ,  O) = w(x, y , z ,  O) = 0 

O(x,y,z,O) = ltp R(O) = O. 

As the time progresses, the Rayleigh number is 
increased following the R(t)  function until the prefixed 
maximum value Rs is reached when t = z, then the 
programmed variation of R(t) ends (unsteady part of 
the heating) and the time evolution of the system 
continues with R(t) = Rs. Note that the heating pro- 
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cess never ends because the forcing parameter R(t) is 
always greater than zero. 

NUMERICAL CONSIDERATIONS 

Numerical method 
The governing equations were solved in primitive 

variables. In the discretization of the physical domain 
a 3D, uniform and staggered grid was used with a 
control volume formulation and incorporating the 
SIMPLER algorithm of Patankar [17], with a power 
law scheme which has been previously used [18] to 
treat the convective~liffusive terms in the discrete for- 
mulation. The discrete equations were solved by an 
iterative tri-diagonal solver (TDMA) with additional 
criteria for fast convergence [19]. 

The time step At used in all calculations was 0.01, 
which represents 1% of the vertical relaxation time Zr. 
A steady state solution, after the heating ends, 
required around 100 time steps which represent 
approximately 15 h of CPU on a SUN Sparc 690 
server. 

To ensure convergence of the numerical algorithm 
at each time step the following criteria were applied 
to all dependent variables at any grid location : 

m m + 2 0  

where • represents a dependent variable, the indexes 
i,j, k indicate a grid point and the index m a given 
iteration of the computer code. Also, the maximum 
residue of the discrete energy and momentum equa- 
tions satisfied this convergence criteria. 

In addition, an internal global check of accuracy 
and consistency is the energy balance. The heat fluxes 
over the box, which are computed using the heat flux 
definition of the preceding section, exhibit an overall 
residue which was always below 1.9 % of the incoming 
heat flux at the bottom wall when steady state solu- 
tions arise. However, in some cases this residue was 
found to be less than 1%. If the convergence criteria 
is stretched, this residue can be minimized (up to 
machine precision), but the number of iterations 
required to solve the equations at a given time step 
increases surprisingly. 

In this work a grid of 17 × 21 × 21 points was used 
with Ax = Az = 0.0625 and Ay = 0.1. A finer grid of 
21 ×41 × 26 points was also tested with a uniform 
step Ax = Ay = Az = 0.05 to check if varying the grid 
spacing could increase the accuracy of the calcu- 
lations. The results, which were obtained for 
Rs = 5 x 103 and T = 0.5, indicate a relative difference 
from the first grid of 0.1% and 0.2% for the (Nu)  
averaged at the cold and the hot boundary, respec- 
tively. Additionally, the relative difference between 
both grids for the maximum vertical velocity is 1.8% 
and the overall heat flux residue falls below 1.3% of 
the incoming heat flux at the bottom boundary, which 
demonstrates an increased accuracy with finer grids. 
However, the required computational time to reach 

the steady state solution for the finest grid triples the 
corresponding time for the first grid. This suggests that 
the choice of the first grid to perform the calculations 
represents a good compromise between accuracy and 
computational effort. 

Analytical solutions for 3D RB convection are not 
yet envisaged even for limiting cases. It therefore 
becomes necessary, in order to confirm the consistency 
and accuracy of the computer code, to reproduce pre- 
vious experimental and numerical results if possible. 
The interferometric results of Farhadieh and Tankin 
[20] and the the numerical results of Fusegi et al. 
[21] were used for this purpose. Close agreement was 
found, indicating high accuracy of the code. The 
details of the validation are given elsewhere [18]. In 
addition, close agreement was found with the exper- 
imental results of Arroyo and Savir6n [14], not only in 
the convective structure found but also in the critical 
behavior of the system, as will be seen in the next 
sections, although in [14] a fluid of high Prandtl num- 
ber was used (silicon oil, Pr = 130). 

NUMERICAL RESULTS 

The heating rate which is controlled, at a fixed 
supercritical Rs, by the unsteady heating time z pro- 
duces an abrupt change in the steady flow pattern 
found in the box when different values of z are con- 
sidered. At a given supercritical Rayleigh number, 
the steady state flow pattern is characterized by two 
counter rotating rolls cells, with axes parallel to the 
shorter side of the box (l.). This solution has already 
been found [3, 5, 11, 14]. 

At a fixed R~, different slopes or heating rates will 
determine a very different flow structure. For example, 
when the steady state solution is reached at 
Rs = 5 × 103 with z = 1.4 (Fig. 2 (a)), the convective 
motion between the two counter rotating rolls (central 
region) is oriented downward and upward near the 
side walls (system state Sd). On the other hand, when 
r = 1.5 (Fig. 2(b)), the fluid rises in the central region 
and falls near the side walls (system state s,). This 
behavior agrees at least qualitatively well with the 
experimental results of Arroyo and Savir6n [14]. Fig- 
ure 2 presents the time evolution of the flow pattern 
and temperature field at z = 0.5/~ for Sd and Su states 
of the system for z = 1.4, 1.5 and Rs = 5 × 103. It is 
shown on x y planes at z = 0.5lz. The time sequence 
ranges from pure conduction to the steady convection 
regime. 

The convective motion has opposite direction 
depending on the value of the ~ parameter. When the 
heating routine is made with ~ = 1.4, a descending 
flow appears at the central zone of the box, i.e. cold 
fluid falls. This cold flow increases with time due to 
the forcing parameter R(t). At the same time, an 
ascending flow of hot fluid starts near the vertical 
walls by virtue of mass conservation and buoyancy 
forces, distorting the isotherms field at those regions. 
The same happens when T = 1.5 but in the opposite 
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Fig. 2. Temporal evolution of the velocity field (left) and isotherms (right) at the middle plane of the box 
(plane x ~  at z = 0.51z) at Rs = 5 × 103. (a) t = 1.4, (b) t = 1.5. Contour interval for isotherms is A0 = 0.1. 

Time and maximum velocity projection I~1~ are shown. (Continued overleaf.) 
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Fig. 2--continued. 
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direction. Hot fluid begins to ascend at the central 
region of the box causing a descending flow of cold 
fluid near the w:rtical walls which distorts the iso- 
therms field in the opposite sense. 

This system behavior is a flow transition clearly 
controlled by the parameter z and it is possible, at 
least within the accuracy of the time step, to find the 
closest bounding values, here called z + and z-,  of the 
critical parameter zo at any given supercritical Ray- 
leigh number Rs. 

Flow pattern ; dependence on Rs 
At R~ = 3.6 x 10 3 the fluid system is placed only 

slightly above the critical state characterized by Re. 
The critical Rayleigh number for a box with similar 
dimensions is approximately Rc ~ 3500, as has been 
found experimentally by Stork and M~iller [3]. 

The change of flow pattern found at this weak 
supercritical region is governed by the parameter z. 
When ~ ~< 1.05, the u velocity becomes negative and 
two counter rotating rolls with a descending flow 
between them are observed (Sd system state). On the 
other hand, when z >/1.06, u becomes positive and 
two counter rotating rolls with an ascending flow 
between them are., found (s, system state). The system 
states, characterized by the flow pattern and the tem- 
perature field, obtained when z ~< 1.05, are identical. 
The same holds when z ~> 1.06. 

This critical behavior can be seen in the sensitivity 
analysis of Fig. 3, which indicates the influence of z in 
the case R~ = 5 x 103. The vertical velocity u (Fig. 3 (a)) 
and temperature 0 (Fig. 3(b)) at the center of the box 
are plotted against time t for six values of z. A family 
of identical sd an6 Su states is found when z ~< 1.40 and 
z/> 1.41, respectively. 

Although the overall convective behavior exhibited 
by the system is selected by the heating rate, after 
the unsteady heating process ends (t = z) the system 
begins to evolve towards an equilibrium state where 
the flow pattern and heat transfer does not present 
any variation wilh time t, indicating that the steady 
state has been reached (see for instance Fig. 3). 

At higher supercritical Rayleigh numbers R~ the 
flow transition also occurs, which indicates that it is a 
robust change in the sense that it does not go away if 
the R~ is changed, at least in the R~ range here studied. 
Table 1 shows that the nearest bounding values z-  
and z + of the critical parameter z~ at which the system 
exhibits the flow 1;ransition are found to increase with 
higher values of R~. 

The overall flow pattern for all values of R~ is simi- 
lar. However, the convective motion attributed to the 
velocities and heat transfer imposed by higher R~ is 
clearly stronger than at low R~. 

The increase of the convective motion of the system 
due to an increase of the Rayleigh number can be 
appreciated in Table l, which shows the maximum 
velocities and local Nusselt numbers at each R~ when 
the s~ and s, state:~ arise for the five cases here studied. 
Owing to the strong increase of the vertical velocity, 

the horizontal velocities (v, w) begin to increase in 
order to preserve mass conservation in the whole 
physical domain. For instance, the maximum hori- 
zontal velocity Wm of the case Rs = 3.6 x 103 is approxi- 
mately 16% of the corresponding Wm of the case 
Rs = 1.6 × 104 (see Table 1). In fact, an increase of the 
w component could be interpreted as an increase of 
flow three-dimensionality, but here this is not the case. 
As Rs grows, an important increase of the horizontal 
velocity components is found, but an increased region 
of a nearly 2D flow at the center of the box is also 
found (top view Fig. 5(b)). 

Figure 4 summarizes the abrupt change in the direc- 
tion of rotation of the rolls at each Rs tested in this 
work as a function of the • parameter. The vertical 
velocity (Fig. 4(a)) and temperature (Fig. 4(b)) are 
plotted at the center of the box. The values of the 
parameter • required to obtain the two directions of 
rotation at a given Rs are different. For instance, in 
cases where ~ >_- ~+, the increase of vertical velocity 
with the Rayleigh number Rs is obvious (a response of 
inertial terms to a thermal source term in momentum 
equations). In fact, it is caused by the overall increase 
of buoyancy forces which are proportional to R(t). 
But the temperature behavior at the center is not obvi- 
ous, because there is not a net increase when the steady 
state is reached. Looking at the su states (Fig. 4(b)), 
the minimum temperature at the center is obtained 
for the cases Rs = 3.6 × 103 and Rs = 1.6 × 104 (almost 
the same value) and the maximum temperature cor- 
responds to the case Rs = 5 × 103. This fact is instruc- 
tive because it suggests that, as the Rs grows, the heat 
diffusion in horizontal direction becomes important 
(right-hand side of energy equation). This is a conse- 
quence of the presence of conducting side walls. The 
same occurs when z ~< ~- cases are inspected. There 
is a decrease of the vertical velocity at the center of 
the box with Rs but the center temperature does not 
decrease continuously. 

Figure 5 summarizes the five cases studied in this 
work. It shows for each Rs the velocity field and iso- 
therms for x -y  planes at z = 0.5lz and z-y  planes near 
the top boundary (x = 0.875). Three main features of 
the convective motion must be explained. First, as R~ 
grows there is an increasing distortion of the isotherms 
at the side wall region caused by an ascending or 
descending flow depending on the z value. A sym- 
metric two-roll pattern can be seen which begins to 
align diagonally in the box. Viewing the z-y  planes, 
one can note an increasingly 2D region with Rs, 
although there is an important increase of horizontal 
w velocity. 

The temperature behavior at the center of the box, 
which has been mentioned before, can be understood 
by comparing the set o f x - y  isotherms. When z+ cases 
are considered, as the supercritical Rayleigh number 
R~ is increased, a portion of cold fluid coming from 
the top boundary begins to be directed towards the 
center of the box adopting a diagonal path. This tra- 
jectory will cool the center of the box, therefore 
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Fig. 3. Sensitivity analysis at Rs = 5 x 103 as a function of the parameter z at the center of the box for (a) 
vertical velocity u vs time t and (b) temperature 0 vs time t. The different values of z are printed over the 

c u r v e s .  

Table 1. Absolute values for maximum velocities and local Nusselt numbers at both limits 
of z~ 

R s ~ U m O m W m Num 

3600 z- = 1.05 7.60 4.07 2.07 2.88 
z+ = 1.06 7.60 4.08 2.07 5.64 

5000 ~- = 1.40 14.22 8.91 4.49 5.43 
z + = 1.41 14.25 8.83 4.51 10.37 

9000 T- = 2.55 22.42 17.33 7.41 9.47 
z + = 2.56 22.42 17.35 7.41 15.99 

13000 z-  = 3.68 29.23 22.76 9.96 12.79 
r + = 3.69 29.26 22.72 10.11 20.77 

16000 r -  = 4.53 33.77 25.94 12.06 14.90 
z + = 4.54 33.80 25.96 12.06 23.83 

decreasing the local t empera tu re .  O n  the o ther  hand ,  

when  z -  cases are considered,  a p o r t i o n  o f  ho t  fluid 

coming  f r o m  the b o t t o m  b o u n d a r y  m o v e s  d iagonal ly  

t owards  the center  o f  the box  and  will increase the 

local t empera tu re .  In  tha t  way,  the t empe ra tu r e  

behav io r  at  the center  o f  the box  is a resul t  o f  the 

d iagona l  fluid paths .  The  d iagona l  p a t h s  are caused  

by  the the rmal  character is t ics  o f  the side walls (ltp 
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profile). When a descending or ascending fluid flow 
starts near those walls, the distortion of the isotherms 
causes a horizontr.l heat flux which can be positive 
(incoming) or negative (outgoing). A positive heat 
flux will heat the descending cold fluid raising its local 
temperature and tlherefore its buoyancy forces. The 
increase of buoyancy and the proximity of the bottom 
boundary  make tlhe fluid turn horizontally, being 
incorporated to the ascending fluid path. On the other 
hand, when hot fluid ascends, a negative heat flux 
appears, decreasing its buoyancy forces gradually. 
This fact and the proximity of the upper boundary  
make the fluid turn horizontally to be incorporated 
this time to the descending fluid path. Physically, the 
increase or the decrease of buoyancy by way of the 
incoming and out~;oing heat fluxes, respectively, has 
the effect of  attenuating the fluid inertia, making the 
incorporation to tl~:e central fluid paths more easy. 

H e a t  transfer  
The most significant difference between the heat 

transfer map of the states sd and su is the sense of the 
heat fluxes at each vertical wall of the box. When the 
heating routine provides a rising central flow (su), 
there exist three incoming heat fluxes into the box ; at 
the bottom boundary  and at the walls perpendicular 
to the roll axes or x - y  walls. There are also three heat 
fluxes flowing out the box;  at the top boundary  and 
at the walls parallel to the roll axes or x - z  walls. If  the 
heating operation provides a system state Sd, the heat 
fluxes at the vertical walls have the opposite sense with 
respect to the su state. There exist incoming heat fluxes 
at the x - z  walls and outgoing fluxes at the x - y  walls 
(see Fig, 6). 

This phenomenon,  which was roughly explained in 
the preceding section, is attributed to the change of 
sign in the thermal gradient due to the convective 
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z 

dis tor t ion tha t  the thermal  field undergoes  near  the 
vertical walls• At  the vicinity of  x - z  walls the slope of  
isotherms will be negative (inclined towards  the ho t  
boundary )  when  system state Su is considered,  because 
cold fluid descends near  these zones. Therefore,  the 
thermal  gradient  in the hor izonta l  direct ion will gener- 

ate an incoming heat  flux• On the other hand, when 
the system reaches the state sa, the rising f low near 
the x - y  walls makes the slope o f  isotherms posit ive 
(inclined towards the cold boundary) ,  then the ther- 
mal gradient points  out  from the walls,  producing an 
outgoing  heat flux. 



Iv]., = 7.58 
Y 

IV],, = 14.09 
Y 

IV],- = 21.87 
Y 

Iv],.,,. = 26.10 
Y 

[v]m = 28.84 
Y 

Heating rate and Rayleigh-B6nard convection 

R, = 3.6 x 10 s, r = 1.06 

Y 

R , = 5 . 0 x  10 ~ , r = 1 . 4 1  

R , = 9 . 0 x l 0  s , ~ '=2.56 

R , =  1 .3x  10 ~ ,r  =3 .69  

Y 

R , = l . 6 x  10 ~ , r = 4 . 5 4  

(b) 

Fig. 5--continued. 

= 3 . 8 9  

Y 

= 8 . 7 6  

Y 

Iv], = 17.29 
Y 

IV]-  = 2 2 . 4 5  
Y 

~ --~ = :-~ ~:~:'~ I 

I 
IV]," = 25.51 

Y 

3045 

When x - y  walls are considered, the alternation of  
heat fluxes, between Su and sd states, obeys the same 
rule, but is slightly different. The change of  slope o f  
the isotherms is also caused by the moving fluid. But 
at a given heating rate, the x - y  walls present both 
negative and positive signs o f  the thermal gradient, 
because they are exposed to an ascending and a 
descending flow at the same time, independently o f  the 

heating routine. This makes the average heat exchange 
between the fluid and those walls, i f  not zero, less 
important than at the other walls because cancellation 
of  heat fluxes will occur in the average operation. 

As Rs grows, an increase o f  all heat fluxes is found, 
but the vertical heat fluxes are always greater than the 
other ones. However,  the ratio between lateral and 
vertical heat fluxes also increases and for instance, the 
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percentage of  the heat flux at x - y  walls with respect 
to the incoming heat flux at bot tom boundary was 
increased from Rs = 3.6× 103 to Rs = 1.6× 10 4 by 
approximately 5-14%, respectively. Physically, higher 
vertical velocities near lateral walls produce a higher 
distortion of  the isotherms, which will increase the 
rate of  heat exchange. 

At  a determined R~ value, the absolute values of  the 
heat fluxes at the side walls are almost the same when 
su and sd states are considered, and the heat fluxes at 
top and bot tom walls are inverted, i.e. the top heat 
flux value when z = z -  coincides approximately with 
the bot tom heat flux when z = z + and vice versa. This 
fact with the help of  the maximum velocity values 
sketched in Table 1 indicates that both su and Sd states 
are symmetrical under a transformation x ~ I x -  x and 
U ---4 - -  U .  

The generalized increase of  convective mot ion exhi- 
bited by the system with increasing values of  Rs can 
also be seen in Fig. 7 where the overall Nusselt number 
( N u )  at the top and bot tom boundary is plotted 
against time when the system adopts the sd state (Su 
state is not  shown). In the transient part of  these 
graphs there is an almost fixed region where ( N u )  = 1 

indicating a pure conductive thermal regime followed 
by a convective regime which starts at approximately 
the same point for all Rs with the exception of  case 
Rs = 3.6 x 103 where the pure conductive regime has 
a large extent. This behavior can also be noted in Fig. 
4, where the pure conductive regime is distinguished 
by the values adopted by the vertical velocity and 
temperature at the center of  the box (0 = 0.5 and 
u = 0) in all cases. 

Adiabatic" vs perfect conductor side walls ; f low tran- 
sition 

This singular flow transition depends on the thermal 
boundary conditions imposed at vertical walls. When 
one considers adiabatic (A) instead of  perfect con- 
ductor (C) side walls, and starts the calculation with 
the same initial conditions, the flow pattern found 
does not  change when ~ is varied, i.e. the flow tran- 
sition disappears, at least in the R~ range here 
considered. 

The flow pattern found always consist of  two coun- 
ter rotating rolls with axes parallel to the shorter side 
of  the box. Hot  fluid rises at the center of  the box 
and cold fluid sinks near the side walls. Therefore the 
adiabatic roll pattern is closely similar to the perfect 
conductor case in the su state (in a dynamical sense). 

Figure 8 shows the steady state velocity field and 
isotherms for an adiabatic and a perfect conductor 
case. It shows the x - y  plane at z = 0.5/~ and the z-y  
plane near the top boundary (x = 0.875). The Ray- 
leigh number is Rs = 5 × 103 and the parameter r is 
z = 0.5. Grace z < z the system in the perfect con- 
ductor case exhibits a Sa state which is the opposite of  
the adiabatic case. But a major  difference arises when 
the isotherms are compared. The boundary condition 
at side walls for the adiabatic case forbids heat transfer 
between the fluid and the environment,  and the 
incoming heat flux at the bot tom boundary is con- 
vected entirely towards the upper plate. 

The effectiveness of  the adiabatic case to carry heat 
from plate to plate is confirmed in Fig. 9, where for 
Rs = 5 × 103, the adiabatic case (z = 0.5) and the per- 
fect conductor case exhibiting su states (~ = 1.41), are 
compared. The overall Nusselt number of  the adia- 
batic case at the bot tom or top boundaries is always 
greater than in the perfect conductor  situation (Figs. 
9(a) and (b)). In addition, Fig. 10(a) shows that the 
adiabatic case has a greater vertical velocity at the 
center of  the box than in the perfect conductor case, 
although the local temperature at the same location 
does not  differ (Fig. 10(b)). It is clear from the argu- 
ments given above, that the flow transition driven 
by the critical parameter,  here referred to as vc, is 
dependent on the boundary conditions imposed at the 
side walls. 

The comparison between both physical con- 
figurations suggests that the mechanism responsible 
for the flow transition at a given Rs is the competi t ion 
between the side wall and horizontal boundary con- 
ditions. The buoyancy forces generated by the ltp con- 
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dition imposed at the side walls will always drive a 
rising flow near these walls, independently of the Ray- 
leigh number  (Rs > 0), when combined with adiabatic 
horizontal walls [22]. 

However, when the box is heated from below and 
the side walls are considered adiabatic, the convective 
motion starts when the Rayleigh number  reaches the 
critical value R~. On the other hand, when a box heated 
from below has ltp side walls, a rising flow near vertical 
walls accompanied by a downward flow at the box 
center (So state) would be observed for R(t) < Rc. This 
argument can be confirmed in Fig. 10(a) where a weak 
negative vertical velocity, during a short time interval, 
is observed at the center of the box in the perfect 
conductor case, indicating a very weak primary Sd 
state. However this state is then neutralized by virtue 
of the increase of buoyancy of the central flow, and 
therefore vanishes, giving rise a pure conductive regime. 

This regime will be dominant  until  the critical Ray- 

leigh number  is reached. Then the convective pattern 
starts either as an Sd or su state selected by z -  or 
z +, respectively. Figures 3(a) and 4(a) also show the 
presence of the weak primary convection. This 
phenomenon is present in all cases independent of the 
final supercritical Rayleigh number  (Fig. 4(a)). Thus 
the physical mechanism driving the flow transition 
can be regarded as the competition of  buoyancy forces 
generated near side walls against those generated at 
the central region of the box when the critical state is 
reached. For  z < zc convection starts near side walls 
and for z > zc the fluid motion will start at the central 
region giving rise to an Sd and an s, state, respectively. 

The computed values z -  and z + which determine so 
and s, states at every Rs are, as was mentioned before, 
the nearest bounding values of the critical parameter 
zc allowed by the time step accuracy. In principle, a 
best approximation to re could be possible with finer 
time steps, however, the restriction imposed by the 
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machine precision and especially the excessive com- 
puting time forbids the numerical search of  zo. 

Finally, one further remark. The overall behavior 
exhibited by z - ,  z + and therefore by zc behind the 
values of  Rs of  Table 1, shows that as Rs approaches 
the critical Rayleigh number  (Stork and Miiller [ 18]), 
the bounding limits of  zc decrease and for Rs close to 
R~ (Rs = 3.6 x 103) z -  and ~+ are found close to unity• 
In other words, for the lowest Rs value here inves- 
tigated, the critical parameter is close to the vertical 
relaxation time of  the system zc "" zr. This fact suggests 
a tendency of  the critical parameter,  zc ~ zr when Rs 
R~, but it is not  possible here to assume it because 
lower Rs values were not  considered because they need 
an increased time step resolution in order to detect 
the flow transition. 

CONCLUDING REMARKS 

A detailed numerical study of  the Rayleigh-Brnard 
problem in a 3D box of  aspect ratios Fy = 2 and 
Fz = 1.25 has been made. The flow pattern found at 
different values of  the supercritical Rayleigh number 
Rs consists of  two counter rotating roll cells with axes 
parallel to the shorter dimension of  the box (lz). 

It has been found that the heating rate, which is 
incorporated into the governing equations by way of  a 
time dependent Rayleigh number  R(t), drives a robust 
flow transition (in the sense that  it does not  go away 
when Rs is increased), when the Rayleigh number is 
assumed a linear function of  time. The flow transition, 
which could also be interpreted as the two branches 
of  a flow bifurcation, consists of  an abrupt  change in 
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the sense of  rotation of  the two-roll pattern when the 
unsteady heating lime or z parameter is located below 
(system state So) and above (system state su) a critical 
value, here referred as re, respectively. The exact 
values of  Zc were not  found, however their bounding 
limits, referred as z - ,  z +, were obtained within time 
step accuracy at every Rs. 

The flow transition is dependent on the boundary 
conditions imposed at the side walls. When adiabatic 
instead of  perfect conductor  side walls are considered, 
the flow transitior: does not  appear. This fact suggest 
that the mechanism driving the flow transition takes 
form from the colaapetition of  lateral against central 
buoyancy forces when the system approaches the criti- 
cal state. The value of  z (unsteady heating rate) deter- 
mines the predominance of  one local region over the 
other. 

As Rs grows, an important  increase of  the hori- 
zontal velocity components  is found, but an increased 
region of  nearly 2D flow at the center of  the box is 
also found. 

The behavior of  the heat transfer at the two sides 
of  the flow transition is different. At  a given R~ the 
direction of  the heat flux at the vertical walls found at 
state su is the opposite of  the direction in the state sd. 
Additionally, the magnitude of  the heat flux that 
leaves the box through the upper plate in the Su state 
is very similar to the magnitude of  the incoming heat 
flux at the bot tom boundary when the system is in 
the sd state, which suggests, in conjunction with the 
similarity of  the maximum velocities found, that both 
states are approximately symmetrical with respect to 
a transformation x ~ I x -  x and u ~ - u. 

Finally, as Rs approaches the critical Rayleigh num- 
ber, the bounding limits of  zc are found close to the 
vertical relaxation time of  the system %. 
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